This study addresses simulations of summertime atmospheric heating/cooling and water use at the local scale in Phoenix, Arizona—a city in the arid Southwestern United States. Our goal is to consider various climate effects by the manipulation of land cover within census tracts at the local scale. This scale refers to horizontal areas of approximately 102–104 m on a side and to measurement heights in the inertial sublayer above the urban canopy and its roughness sublayer. The model we use for this scale is the Local Scale Urban Meteorological Parameterization Scheme (LUMPS) after Grimmond and Oke . We calculate different scenarios using the LUMPS model to determine the interplay of water use and summer diurnal variations of atmospheric heating and cooling processes for selected census tracts in Phoenix. First, we simulate xeriscaping within the census tract neighborhoods by transforming green spaces into soil. The second scenario simulates an infill and Brownfield development scenario, increasing density and impervious surfaces while at the same time decreasing soil. Third, we reduce barren soil and impervious surface areas to simulate a green city. With LUMPS we can understand the optimization of water use and at the same time the maximization of the cooling potential within the local scale area as a whole, dependent on varying the total surface cover fractions. In urban planning, LUMPS can be used as a scenario-based tool to design pedestrian-friendly sustainable development in desert climates where land cover is tailored to reduce UHI effects and to induce more comfortable daytime temperatures.