Efficient visuomotor behavior depends on integrated processing by the visual and motor systems of the cerebral cortex. Yet, many previous cortical neurophysiology studies have examined the visual and motor modalities in isolation, largely ignoring questions of large-scale cross-modal integration. To address this issue, we analyzed event-related local field potentials simultaneously recorded from multiple visual, motor, and executive cortical sites in monkeys performing a visuomotor pattern discrimination task. The timing and cortical location of four aspects of event-related activities were examined: stimulus-evoked activation onset, stimulus-specific processing, stimulus category–specific processing, and response-specific processing. Activations appeared earliest in striate cortex and rapidly thereafter in other visual areas. Stimulus-specific processing began early in most visual cortical areas, some at activation onset. Early onset latencies were also observed in motor, premotor, and prefrontal areas, some as early as in striate cortex, but these early-activating frontal sites did not show early stimulus-specific processing. Response-specific processing began around 150 ms poststimulus in widespread cortical areas, suggesting that perceptual decision formation and response selection arose through concurrent processes of visual, motor, and executive areas. The occurrence of stimulus-specific and stimulus category–specific differences after the onset of response-specific processing suggests that sensory and motor stages of visuomotor processing overlapped in time.