Traditionally, the location of lightning strike points has been determined by using the rolling sphere method, but recently the collection volume method (CVM) has also been proposed for the placement of air terminals on complex structures. Both these methods are empirical in nature and a more advanced model based on physics of discharges is needed to improve the state of affairs. This model is used to evaluate the striking distance from corners and air terminals on actual buildings and the results are qualitatively compared with the predictions of the rolling sphere method and the CVM. The results show that the striking distance not only depends upon the prospective return stroke current and the geometry of the building, but also on the lateral position of the downward leader with respect to the strike point. A further analysis is performed to qualitatively compare the lightning attraction zones obtained with the CVM and the leader inception zones obtained for a building with and without air terminals. The obtained results suggest that the collection volume concept overestimates the protection areas of air terminals placed on complex structures, bringing serious doubts on the validity of this method.