Mechanics and energetics modeling of ball-milled metal foil and particle structures

M Aureli, CC Doumanidis, IE Gunduz, AGS Hussien… - Acta Materialia, 2017 - Elsevier
M Aureli, CC Doumanidis, IE Gunduz, AGS Hussien, Y Liao, C Rebholz, CC Doumanidis
Acta Materialia, 2017Elsevier
The reported research establishes a semi-analytical computational predictive model of
fractal microstructure in ball-milled metal foils and powder particulates, with emphasis on its
transformation mechanics via an energy-based approach. The evolving structure is
composed of reconfigurable warped ellipsoid material domains, subjected to collisions with
the ball milling impactors following Brownian motion energetics. In the first step of the model,
impacts are assumed to generate ideal Hertzian elastic stress fields, with associated bulk …
Abstract
The reported research establishes a semi-analytical computational predictive model of fractal microstructure in ball-milled metal foils and powder particulates, with emphasis on its transformation mechanics via an energy-based approach. The evolving structure is composed of reconfigurable warped ellipsoid material domains, subjected to collisions with the ball milling impactors following Brownian motion energetics. In the first step of the model, impacts are assumed to generate ideal Hertzian elastic stress fields, with associated bulk deformations quantified as per Castigliano's strain energy methods. In the second stage of the model, elastic energies are recast to produce frictional slip and plastic yield, thus resulting in surface micro-joints. Only two parameters of the model necessitate experimental calibration, performed by comparison of joint energy with laboratory tensile measurements on ball-milled multilayer Al-Ni foils. Model predictions of evolving internal microstructure are validated against SEM micrographs of Al-Ni powder particulate samples for different ball milling durations. Results demonstrate the capability of the model to accurately capture relevant fractal measures of the microstructure of ball-milled powders.
Elsevier
以上显示的是最相近的搜索结果。 查看全部搜索结果