This study describes and demonstrates different techniques for surface fitting daily environmental hazards data of particulate matter with aerodynamic diameter less than or equal to 2.5 μm (PM2.5) for the purpose of inte grating respiratory health and environmental data for the Centers for Disease Control and Prevention (CDC) pilot study of Health and Environment Linked for Information Exchange (HELIX)–Atlanta. It presents a methodology for estimating daily spatial surfaces of ground-level PM2.5 concentrations using the B-Spline and inverse distance weighting (IDW) surface-fitting techniques, leveraging National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectrometer (MODIS) data to complement U.S. Environmental Protection Agency (EPA) ground observation data. The study used measurements of ambient PM2.5 from the EPA database for the year 2003 as well as PM2.5 estimates derived from NASA’s satellite data. Hazard data have been processed to derive the surrogate PM2.5 exposure estimates. This paper shows that merging MODIS remote sensing data with surface observations of PM2.5 not only provides a more complete daily representation of PM2.5 than either dataset alone would allow, but it also reduces the errors in the PM2.5- estimated surfaces. The results of this study also show that although the IDW technique can introduce some numerical artifacts that could be due to its interpolating nature, which assumes that the maxima and minima can occur only at the observation points, the daily IDW PM2.5 surfaces had smaller errors in general, with respect to observations, than those of the B-Spline surfaces. Finally, the methods discussed in this paper establish a foundation for environmental public health linkage and association studies for which determining the concentrations of an environmental hazard such as PM2.5 with high accuracy is critical.