This paper is concerned with the channel estimation problem in millimeter wave (mmWave) wireless systems with large antenna arrays. By exploiting the inherent sparse nature of the mmWave channel, we first propose a fast channel estimation (FCE) algorithm based on a novel overlapped beam pattern design, which can increase the amount of information carried by each channel measurement compared to the existing nonoverlapped designs and thus reduce the required channel estimation time. We develop a maximum likelihood estimator to optimally extract the path information from the channel measurements. Then, we propose a novel rate-adaptive channel estimation (RACE) algorithm, which can dynamically adjust the number of channel measurements based on the expected probability of estimation error (PEE). The performance of both proposed algorithms is analyzed. For the FCE algorithm, an approximate closed-form expression for the PEE is derived. For the RACE algorithm, a lower bound for the minimum signal energy-to-noise ratio required for a given number of channel measurements is developed based on the Shannon-Hartley theorem. Simulation results show that the FCE algorithm significantly reduces the number of channel estimation measurements compared to the existing algorithms using nonoverlapped beam patterns. By adopting the RACE algorithm, we can achieve up to a 6 dB gain in signal energy-to-noise ratio for the same PEE compared to the existing algorithms.