Hepatitis E virus (HEV) causes substantial morbidity and mortality in developing countries and is considered an emerging foodborne pathogen in developed countries in which it was previously not endemic. To investigate genetic association between human HEV infection and HEV-contaminated high-risk food in Hong Kong, we compared local virus strains obtained from hepatitis E patient sera with those surveyed from high-risk food items during 2014 to 2016. Twenty-four cases of laboratory-confirmed human HEV infections were identified from January 2014 to March 2016 in our hospitals. Five types of food items at risk of HEV contamination were purchased on a biweekly basis from April 2014 to March 2016 in two local market settings: supermarkets (lamb, oyster, and pig liver) and wet markets (oyster, pig blood curd, pig large intestine, and pig liver). HEV RNA detection was performed by a real-time reverse transcription-PCR assay. HEV RNA was detected in pig liver, pig intestine, and oyster samples with prevalences of 1.5%, 0.4%, and 0.2%, respectively. Neighbor-joining phylogenetic inference showed that all human and swine HEV strains belonged to genotype 4. HEV subtype distributions in humans and swine were highly comparable: subtype 4b predominated, while subtype 4d was the minority. Local human and swine HEV genotype 4 strains shared over 95% nucleotide identity and were genetically very similar, implicating swine as an important foodborne source of autochthonous human HEV infections in Hong Kong. Action should be taken to raise the awareness among public and health care professionals of hepatitis E as an emerging foodborne disease.