Monitoring adaptive genetic responses to environmental change

MM Hansen, I Olivieri, DM Waller, EE Nielsen… - Molecular …, 2012 - Wiley Online Library
MM Hansen, I Olivieri, DM Waller, EE Nielsen, GeM Working Group
Molecular ecology, 2012Wiley Online Library
Widespread environmental changes including climate change, selective harvesting and
landscape alterations now greatly affect selection regimes for most organisms. How animals
and plants can adapt to these altered environments via contemporary evolution is thus of
strong interest. We discuss how to use genetic monitoring to study adaptive responses via
repeated analysis of the same populations over time, distinguishing between phenotypic
and molecular genetics approaches. After describing monitoring designs, we develop …
Abstract
Widespread environmental changes including climate change, selective harvesting and landscape alterations now greatly affect selection regimes for most organisms. How animals and plants can adapt to these altered environments via contemporary evolution is thus of strong interest. We discuss how to use genetic monitoring to study adaptive responses via repeated analysis of the same populations over time, distinguishing between phenotypic and molecular genetics approaches. After describing monitoring designs, we develop explicit criteria for demonstrating adaptive responses, which include testing for selection and establishing clear links between genetic and environmental change. We then review a few exemplary studies that explore adaptive responses to climate change in Drosophila, selective responses to hunting and fishing, and contemporary evolution in Daphnia using resurrected resting eggs. We further review a broader set of 44 studies to assess how well they meet the proposed criteria, and conclude that only 23% fulfill all criteria. Approximately half (43%) of these studies failed to rule out the alternative hypothesis of replacement by a different, better‐adapted population. Likewise, 34% of the studies based on phenotypic variation did not test for selection as opposed to drift. These shortcomings can be addressed via improved experimental designs and statistical testing. We foresee monitoring of adaptive responses as a future valuable tool in conservation biology, for identifying populations unable to evolve at sufficiently high rates and for identifying possible donor populations for genetic rescue. Technological advances will further augment the realization of this potential, especially next‐generation sequencing technologies that allow for monitoring at the level of whole genomes.
Wiley Online Library
以上显示的是最相近的搜索结果。 查看全部搜索结果