The paper analyzes the measurements of the soil compaction factor by vibroacoustic using a dynamic plate. The principle of operation consists in triggering a short-term force impulse, caused by the impact of the weight falling from a certain height. Then, using the accelerometer sensors, the amplitude values of the ground response to the given external extortion were recorded. The analysis of the signal using the fast Fourier transform (FFT) algorithm was aimed at its distribution into harmonic components. A correlation between the number of resonance frequencies occurring in the signal and the compaction factor of the considered soil was observed. For an loose soil there is one resonant frequency and with the change of the soil bulk density, i.e. an increase in the compaction factor, higher order components appear. Using this relationship, it was possible to develop an effective method for assessing the compaction factor of the considered ground material. In the paper three types of experiments were performed. The first type of research was to force the energy impulse with the sensors found on the measuring plate. In the second study, the signal generated by the rammer was read and in the last one the signal was recorded directly on the rammer.