Mr. scan: Extreme scale density-based clustering using a tree-based network of gpgpu nodes

B Welton, E Samanas, BP Miller - Proceedings of the International …, 2013 - dl.acm.org
B Welton, E Samanas, BP Miller
Proceedings of the International Conference on High Performance Computing …, 2013dl.acm.org
Density-based clustering algorithms are a widely-used class of data mining techniques that
can find irregularly shaped clusters and cluster data without prior knowledge of the number
of clusters it contains. DBSCAN is the most well-known density-based clustering algorithm.
We introduce our version of DBSCAN, called Mr. Scan, which uses a hybrid parallel
implementation that combines the MRNet tree-based distribution network with GPGPU-
equipped nodes. Mr. Scan avoids the problems of existing implementations by effectively …
Density-based clustering algorithms are a widely-used class of data mining techniques that can find irregularly shaped clusters and cluster data without prior knowledge of the number of clusters it contains. DBSCAN is the most well-known density-based clustering algorithm. We introduce our version of DBSCAN, called Mr. Scan, which uses a hybrid parallel implementation that combines the MRNet tree-based distribution network with GPGPU-equipped nodes. Mr. Scan avoids the problems of existing implementations by effectively partitioning the point space and by optimizing DBSCAN's computation over dense data regions. We tested Mr. Scan on both a geolocated Twitter dataset and image data obtained from the Sloan Digital Sky Survey. At its largest scale, Mr. Scan clustered 6.5 billion points from the Twitter dataset on 8,192 GPU nodes on Cray Titan in 17.3 minutes. All other parallel DBSCAN implementations have only demonstrated the ability to cluster up to 100 million points.
ACM Digital Library
以上显示的是最相近的搜索结果。 查看全部搜索结果