Neural 3d holography: Learning accurate wave propagation models for 3d holographic virtual and augmented reality displays

S Choi, M Gopakumar, Y Peng, J Kim… - ACM Transactions on …, 2021 - dl.acm.org
ACM Transactions on Graphics (TOG), 2021dl.acm.org
Holographic near-eye displays promise unprecedented capabilities for virtual and
augmented reality (VR/AR) systems. The image quality achieved by current holographic
displays, however, is limited by the wave propagation models used to simulate the physical
optics. We propose a neural network-parameterized plane-to-multiplane wave propagation
model that closes the gap between physics and simulation. Our model is automatically
trained using camera feedback and it outperforms related techniques in 2D plane-to-plane …
Holographic near-eye displays promise unprecedented capabilities for virtual and augmented reality (VR/AR) systems. The image quality achieved by current holographic displays, however, is limited by the wave propagation models used to simulate the physical optics. We propose a neural network-parameterized plane-to-multiplane wave propagation model that closes the gap between physics and simulation. Our model is automatically trained using camera feedback and it outperforms related techniques in 2D plane-to-plane settings by a large margin. Moreover, it is the first network-parameterized model to naturally extend to 3D settings, enabling high-quality 3D computer-generated holography using a novel phase regularization strategy of the complex-valued wave field. The efficacy of our approach is demonstrated through extensive experimental evaluation with both VR and optical see-through AR display prototypes.
ACM Digital Library
以上显示的是最相近的搜索结果。 查看全部搜索结果