We have extended our earlier derivative analysis method to higher derivatives to estimate the depth and shape (shape factor) of a buried structure from self‐potential (SP) data. We show that numerical second, third, and fourth horizontal‐derivative anomalies obtained from SP data using filters of successive window lengths can be used to simultaneously determine the depth and the shape of a buried structure. The depths and shapes obtained from the higher derivatives anomaly values can be used to determine simultaneously the actual depth and shape of the buried structure and the optimum order of the regional SP anomaly along the profile. The method is semi‐automatic and it can be applied to residuals as well as to observed SP data.
We have also developed a method (based on a least‐squares minimization approach) to determine, successively, the depth and the shape of a buried structure from the residual SP anomaly profile. By defining the zero anomaly distance and the anomaly value at the origin, the problem of depth determination has been transformed into the problem of finding a solution of a nonlinear equation of form f(z) = 0. Knowing the depth and applying the least‐squares method, the shape factor is determined using a simple linear equation.
Finally, we apply these methods to theoretical data with and without random noise and on a known field example from Germany. In all cases, the depth and shape solutions obtained are in good agreement with the actual ones.