In this study, we construct new numerical methods for solving the initial value problem (IVP) in ordinary differential equations based on a symmetrical quadrature integration formula using hybrid functions. The proposed methods are designed to provide an efficient and accurate solution to IVP and are more suitable for problems with non-smooth solutions. The key idea behind the proposed methods is to combine the advantages of traditional numerical methods, such as Runge–Kutta and Taylor’s series methods, with the strengths of modern hybrid functions. Furthermore, we discuss the accuracy and stability analysis of these methods. The resulting methods can handle a wide range of problems, including those with singularities, discontinuities, and other non-smooth features. Finally, to demonstrate the validity of the proposed methods, we provide several numerical examples to illustrate the efficiency and accuracy of these methods.