Noncholinergic excitatory actions of motoneurons in the neonatal mammalian spinal cord

GZ Mentis, FJ Alvarez, A Bonnot… - Proceedings of the …, 2005 - National Acad Sciences
GZ Mentis, FJ Alvarez, A Bonnot, DS Richards, D Gonzalez-Forero, R Zerda, MJ O'Donovan
Proceedings of the National Academy of Sciences, 2005National Acad Sciences
Mammalian spinal motoneurons are considered to be output elements of the spinal cord that
generate exclusively cholinergic actions on Renshaw cells, their intraspinal synaptic targets.
Here, we show that antidromic stimulation of motor axons evokes depolarizing
monosynaptic potentials in Renshaw cells that are depressed, but not abolished, by
cholinergic antagonists. This residual potential was abolished by 2-amino-5-
phosphonovaleric acid and 6-cyano-7-nitroquinoxaline-2, 3-dione. In the presence of …
Mammalian spinal motoneurons are considered to be output elements of the spinal cord that generate exclusively cholinergic actions on Renshaw cells, their intraspinal synaptic targets. Here, we show that antidromic stimulation of motor axons evokes depolarizing monosynaptic potentials in Renshaw cells that are depressed, but not abolished, by cholinergic antagonists. This residual potential was abolished by 2-amino-5-phosphonovaleric acid and 6-cyano-7-nitroquinoxaline-2,3-dione. In the presence of cholinergic antagonists, motor axon stimulation triggered locomotor-like activity that was blocked by 2-amino-5-phosphonovaleric acid. Some cholinergic motoneuronal terminals on both Renshaw cells and motoneurons were enriched in glutamate, but none expressed vesicular glutamate transporters. Our results raise the possibility that motoneurons release an excitatory amino acid in addition to acetylcholine and that they may be more directly involved in the genesis of mammalian locomotion than previously believed.
National Acad Sciences
以上显示的是最相近的搜索结果。 查看全部搜索结果