Numerical Investigation of a Bidirectional Wave Coupler Based on Plasmonic Bragg Gratingsin the Near Infrared Domain

Z Fu, Q Gan, K Gao, Z Pan, FJ Bartoli - Journal of lightwave …, 2008 - opg.optica.org
Z Fu, Q Gan, K Gao, Z Pan, FJ Bartoli
Journal of lightwave technology, 2008opg.optica.org
In this paper, we present a theoretical discussion of the design of bidirectional wave
couplers based on plasmonic Bragg gratings in the near infrared domain. A key feature in
the design of the plasmonic Bragg gratings is the dependence of the effective refractive
index on the thickness of the dielectric layer. These gratings, which function as band
rejection filters, enable directional coupling of different SPP modes. By placing two gratings
with different band gaps on opposite sides of a subwavelength metallic slit, a bidirectional …
In this paper, we present a theoretical discussion of the design of bidirectional wave couplers based on plasmonic Bragg gratings in the near infrared domain. A key feature in the design of the plasmonic Bragg gratings is the dependence of the effective refractive index on the thickness of the dielectric layer. These gratings, which function as band rejection filters, enable directional coupling of different SPP modes. By placing two gratings with different band gaps on opposite sides of a subwavelength metallic slit, a bidirectional plasmonic surface wave coupler can be realized. Two-dimensional (2-D) FDTD simulations were performed to elucidate the properties of the device, and were found to agree well with the theoretical predictions. Finally, the wave confinement properties of the plasmonic Bragg gratings are studied further by introducing the equivalent 1-D photonic crystal band structures.
opg.optica.org
以上显示的是最相近的搜索结果。 查看全部搜索结果