Obtaining parsimonious hydraulic conductivity fields using head and transport observations: A Bayesian geostatistical parameter estimation approach

M Fienen, R Hunt, D Krabbenhoft… - Water resources …, 2009 - Wiley Online Library
Water resources research, 2009Wiley Online Library
Flow path delineation is a valuable tool for interpreting the subsurface hydrogeochemical
environment. Different types of data, such as groundwater flow and transport, inform different
aspects of hydrogeologic parameter values (hydraulic conductivity in this case) which, in
turn, determine flow paths. This work combines flow and transport information to estimate a
unified set of hydrogeologic parameters using the Bayesian geostatistical inverse approach.
Parameter flexibility is allowed by using a highly parameterized approach with the level of …
Flow path delineation is a valuable tool for interpreting the subsurface hydrogeochemical environment. Different types of data, such as groundwater flow and transport, inform different aspects of hydrogeologic parameter values (hydraulic conductivity in this case) which, in turn, determine flow paths. This work combines flow and transport information to estimate a unified set of hydrogeologic parameters using the Bayesian geostatistical inverse approach. Parameter flexibility is allowed by using a highly parameterized approach with the level of complexity informed by the data. Despite the effort to adhere to the ideal of minimal a priori structure imposed on the problem, extreme contrasts in parameters can result in the need to censor correlation across hydrostratigraphic bounding surfaces. These partitions segregate parameters into facies associations. With an iterative approach in which partitions are based on inspection of initial estimates, flow path interpretation is progressively refined through the inclusion of more types of data. Head observations, stable oxygen isotopes (18O/16O ratios), and tritium are all used to progressively refine flow path delineation on an isthmus between two lakes in the Trout Lake watershed, northern Wisconsin, United States. Despite allowing significant parameter freedom by estimating many distributed parameter values, a smooth field is obtained.
Wiley Online Library
以上显示的是最相近的搜索结果。 查看全部搜索结果