the Legendre sequence L of period p and the Sidelnikov sequence T of period pm− 1. The
results are L_k (L)=\left {(p+ 1)/2,\quad 1 ≤ k ≤ (p-3)/2,\0,\quad k ≥ (p-1)/2,. L_k (T)
≥\min\left (\left (p+ 1 2\right)^ m-1,\left ⌈ p^ m-1 k+ 1\right ⌉-\left (p+ 1 2\right)^ m+ 1\right) for
1≤ k≤(pm− 3)/2 and L_k (T)= 0 for k≥(pm− 1)/2. In particular, we prove L_k (T)=\left (p+ 1
2\right)^ m-1,\quad 1 ≤ k ≤ 1 2\left (3 2\right)^ m-1.