We address the issue of establishing standard forms for nonnegative and Metzler matrices by considering their similarity to nonnegative and Metzler Hessenberg matrices. It is shown that for dimensions n 3, there always exists a subset of nonnegative matrices that are not similar to a nonnegative Hessenberg form, which in case of n = 3 also provides a complete characterization of all such matrices. For Metzler matrices, we further establish that they are similar to Metzler Hessenberg matrices if n 4. In particular, this provides the first standard form for controllable third order continuous-time positive systems via a positive controller-Hessenberg form. Finally, we present an example which illustrates why this result is not easily transferred to discrete-time positive systems. While many of our supplementary results are proven in general, it remains an open question if Metzler matrices of dimensions n 5 remain similar to Metzler Hessenberg matrices.