Radial artery pulse pressure contains abundant cardiovascular physiological and pathological information, which plays an important role in clinical diagnosis of traditional Chinese medical science. However, many photoelectric sensors and pressure sensors will lose a large number of waveform features in monitoring pulse, which will make it difficult for doctors to precisely evaluate the patients’ health. In this letter, we proposed an on-skin flexible pressure sensor for monitoring radial artery pulse. The sensor consists of the MXene (Ti3C2Tx)-coated nonwoven fabrics (n-WFs) sensitive layer and laser-engraved interdigital copper electrodes. Benefiting from substantially increased conductive paths between fibers and electrodes during normal compression, the sensor obtains high sensitivity (3.187 kPa−1), fast response time (15 ms), low detection limit (11.1 Pa), and long-term durability (20,000 cycles). Furthermore, a flexible processing circuit was connected with the sensor mounted on wrist radial artery, achieving wirelessly precise monitoring of the pulse on smart phones in real time. Compared with the commercial flexible pressure sensor, our sensor successfully captures weak systolic peak precisely, showing its great clinical potential and commercial value.