In the present work, furfuryl alcohol (FAL) alcoholysis towards ethyl levulinate (EL) was studied over a mesoporous SO3H-SBA-15 catalyst. The effect of various operating parameters i.e., temperature, catalyst dose, furfuryl alcohol amount, and time was studied and optimized via robust Response Surface Methodology through central composite rotatable designs (CCRD) method on the conversion of FAL to EL. According to Response Surface Methodology, under optimum reaction conditions viz. temperature 110 °C, catalyst dose 0.42 g, time 3 h, and FAL amount of 1.46 g, maximum EL yield (95 %) was recorded. Further, the effect of reaction parameters on the kinetics of the said reaction was also examined, suggesting the second-order kinetic concerning all operating parameters. Eventually, the reusability of the catalyst is evident in a decrease of almost 40 % yield towards EL in the fourth cycle.