Thin oil rim are reservoirs with hydrocarbon pay zone not more than 100 ft. Production challenges mainly water, and gas coning arises due to this trait and presence of a larger gas cap and aquifer. To safely exploit from oil rim reservoirs, the right production choices and optimization of production parameters need to be implemented before the commencement of any recovery scheme. A case study reservoir of an oil rim in the Niger-delta producing region is placed on a concurrent production via 8 horizontal producer wells after history matching and optimization of production parameters using a black oil simulator (Eclipse). Six different pattern scenarios of water and gas injection at 3 rates are considered: optimized oil recovery estimates of 5.43%, 4.51%, 5.41%, 4.93%, 5.89%, and 5.82% for inverted direct line water injection, inverted staggered water injection, inverted 4 spot injection, 5 spot water injection, inverted 7 spot water injection, and inverted 9 spot water injection respectively. The incremental oil recovery over the base case (no injection) recorded in like manner are 1.43%, 0.51%, 1.41%, 0.93%, 1.89%, and 1.82%. The results show that pattern water injection at 1000 stb/day is more suitable for optimum oil recovery for oil rims under concurrent production.