Optogenetic activation of normalization in alert macaque visual cortex

JJ Nassi, MC Avery, AH Cetin, AW Roe, JH Reynolds - Neuron, 2015 - cell.com
Neuron, 2015cell.com
Normalization has been proposed as a canonical computation that accounts for a variety of
nonlinear neuronal response properties associated with sensory processing and higher
cognitive functions. A key premise of normalization is that the excitability of a neuron is
inversely proportional to the overall activity level of the network. We tested this by
optogenetically activating excitatory neurons in alert macaque primary visual cortex and
measuring changes in neuronal activity as a function of stimulation intensity, with or without …
Summary
Normalization has been proposed as a canonical computation that accounts for a variety of nonlinear neuronal response properties associated with sensory processing and higher cognitive functions. A key premise of normalization is that the excitability of a neuron is inversely proportional to the overall activity level of the network. We tested this by optogenetically activating excitatory neurons in alert macaque primary visual cortex and measuring changes in neuronal activity as a function of stimulation intensity, with or without variable-contrast visual stimulation. Optogenetic depolarization of excitatory neurons either facilitated or suppressed baseline activity, consistent with indirect recruitment of inhibitory networks. As predicted by the normalization model, neurons exhibited sub-additive responses to optogenetic and visual stimulation, which depended lawfully on stimulation intensity and luminance contrast. We conclude that the normalization computation persists even under the artificial conditions of optogenetic stimulation, underscoring the canonical nature of this form of neural computation.
cell.com
以上显示的是最相近的搜索结果。 查看全部搜索结果