Organophosphorous pesticide exposure alters sperm chromatin structure in Mexican agricultural workers

LC Sanchez-Pena, BE Reyes, L Lopez-Carrillo… - Toxicology and applied …, 2004 - Elsevier
LC Sanchez-Pena, BE Reyes, L Lopez-Carrillo, R Recio, J Morán-Martınez, ME Cebrian…
Toxicology and applied pharmacology, 2004Elsevier
Our objective was to evaluate alterations in sperm chromatin structure in men occupationally
exposed to a mixture of organophosphorus pesticides (OP) because these alterations have
been proposed to compromise male fertility and offspring development. Chromatin
susceptibility to in situ acid-induced denaturation structure was assessed by the sperm
chromatin structure assay (SCSA). Urinary levels of alkylphosphates (DAP) were used to
assess exposure. Diethylthiophosphate (DETP) was the most frequent OP metabolite found …
Our objective was to evaluate alterations in sperm chromatin structure in men occupationally exposed to a mixture of organophosphorus pesticides (OP) because these alterations have been proposed to compromise male fertility and offspring development. Chromatin susceptibility to in situ acid-induced denaturation structure was assessed by the sperm chromatin structure assay (SCSA). Urinary levels of alkylphosphates (DAP) were used to assess exposure. Diethylthiophosphate (DETP) was the most frequent OP metabolite found in urine samples indicating that compounds derived from thiophosphoric acid were mainly used. Chromatin structure was altered in most samples. About 75% of semen samples were classified as having poor fertility potential (>30% of Percentage of DNA Fragmentation Index [DFI%]), whereas individuals without OP occupational exposure showed average DFI% values of 9.9%. Most parameters of conventional semen analysis were within normality except for the presence of immature cells (IGC) in which 82% of the samples were above reference values. There were significant direct associations between urinary DETP concentrations and mean DFI and SD-DFI but marginally (P = 0.079) with DFI%, after adjustment for potential confounders, including IGC. This suggests that OP exposure alters sperm chromatin condensation, which could be reflected in an increased number of cells with greater susceptibility to DNA denaturation. This study showed that human sperm chromatin is a sensitive target to OP exposure and may contribute to adverse reproductive outcomes. Further studies on the relevance of protein phosphorylation as a possible mechanism by which OP alter sperm chromatin are required.
Elsevier
以上显示的是最相近的搜索结果。 查看全部搜索结果

Google学术搜索按钮

example.edu/paper.pdf
搜索
获取 PDF 文件
引用
References