Using human erythrocyte membranes (EMs) as a model system, we have examined photo-induced lipid peroxidation by a bis-methanophosphonate fullerene (BMPF) and four other fullerene derivatives including a mono-methanophosphonic acid fullerene (MMPF), a dimalonic acid C60 (DMA C60), a trimalonic acid C60 (TMA C60) and a polyhydroxylated fullerene (fullerol). Lipid peroxidation was assessed as the malondialdehyde (MDA) level measured by the thiobarbituric acid assay. It was observed that BMPF increased the MDA level of EMs after irradiation in both time- and dose-dependent manners. The photo-induced activity became very significant (p<0.01) under the conditions of either the concentration of 10μM and irradiation time of 30min or the concentration of 5μM and irradiation time of 60min. Involvement of reactive oxygen species (ROS) in the activity was also examined by specific inhibitors of singlet oxygen, superoxide anions and hydroxyl radicals, respectively. While all three kinds were found responsible for the activity, the former two might play more important roles than the last one. Furthermore, the activity of BMPF was the strongest among all tested fullerene derivatives. These results indicated BMPF was a potential photosensitizer that would find application in photodynamic therapy.