Physical limits to biomechanical sensing in disordered fibre networks

F Beroz, LM Jawerth, S Münster, DA Weitz… - Nature …, 2017 - nature.com
Nature communications, 2017nature.com
Cells actively probe and respond to the stiffness of their surroundings. Since
mechanosensory cells in connective tissue are surrounded by a disordered network of
biopolymers, their in vivo mechanical environment can be extremely heterogeneous. Here
we investigate how this heterogeneity impacts mechanosensing by modelling the cell as an
idealized local stiffness sensor inside a disordered fibre network. For all types of networks
we study, including experimentally-imaged collagen and fibrin architectures, we find that …
Abstract
Cells actively probe and respond to the stiffness of their surroundings. Since mechanosensory cells in connective tissue are surrounded by a disordered network of biopolymers, their in vivo mechanical environment can be extremely heterogeneous. Here we investigate how this heterogeneity impacts mechanosensing by modelling the cell as an idealized local stiffness sensor inside a disordered fibre network. For all types of networks we study, including experimentally-imaged collagen and fibrin architectures, we find that measurements applied at different points yield a strikingly broad range of local stiffnesses, spanning roughly two decades. We verify via simulations and scaling arguments that this broad range of local stiffnesses is a generic property of disordered fibre networks. Finally, we show that to obtain optimal, reliable estimates of global tissue stiffness, a cell must adjust its size, shape, and position to integrate multiple stiffness measurements over extended regions of space.
nature.com
以上显示的是最相近的搜索结果。 查看全部搜索结果