Predicting residual stiffness of cracked composite laminates subjected to multi-axial inplane loading

M Kashtalyan, C Soutis - Journal of Composite Materials, 2013 - journals.sagepub.com
Journal of Composite Materials, 2013journals.sagepub.com
This is a contribution to the exercise that aims to benchmark and validate the current
continuum damage and fracture mechanics methodologies used for predicting the
mechanical behaviour of fibre-reinforced plastic composites under complex loadings. The
paper describes an analytical approach to predict the effect of intra-(matrix cracking and
splitting) and inter-laminar (delamination) damage on the residual stiffness properties of the
laminate, which can be used in the post-initial failure analysis, taking full account of damage …
This is a contribution to the exercise that aims to benchmark and validate the current continuum damage and fracture mechanics methodologies used for predicting the mechanical behaviour of fibre-reinforced plastic composites under complex loadings. The paper describes an analytical approach to predict the effect of intra- (matrix cracking and splitting) and inter-laminar (delamination) damage on the residual stiffness properties of the laminate, which can be used in the post-initial failure analysis, taking full account of damage mode interaction. The approach is based on a two-dimensional shear lag stress analysis and the equivalent constraint model of the damaged laminate with multiple damaged plies. The application of the approach to predicting degraded stiffness properties of a multidirectional laminate with multilayer intra- and inter-laminar damage is demonstrated for and cross-ply laminates made from a specific glass/epoxy system under in-plane uniaxial and biaxial loading damaged by transverse and longitudinal matrix cracks and crack-induced transverse and longitudinal delamination.
Sage Journals
以上显示的是最相近的搜索结果。 查看全部搜索结果