Quantitative lung morphology: semi-automated measurement of mean linear intercept

G Crowley, S Kwon, EJ Caraher, SH Haider… - BMC pulmonary …, 2019 - Springer
G Crowley, S Kwon, EJ Caraher, SH Haider, R Lam, P Batra, D Melles, M Liu, A Nolan
BMC pulmonary medicine, 2019Springer
Background Quantifying morphologic changes is critical to our understanding of the
pathophysiology of the lung. Mean linear intercept (MLI) measures are important in the
assessment of clinically relevant pathology, such as emphysema. However, qualitative
measures are prone to error and bias, while quantitative methods such as mean linear
intercept (MLI) are manually time consuming. Furthermore, a fully automated, reliable
method of assessment is nontrivial and resource-intensive. Methods We propose a semi …
Background
Quantifying morphologic changes is critical to our understanding of the pathophysiology of the lung. Mean linear intercept (MLI) measures are important in the assessment of clinically relevant pathology, such as emphysema. However, qualitative measures are prone to error and bias, while quantitative methods such as mean linear intercept (MLI) are manually time consuming. Furthermore, a fully automated, reliable method of assessment is nontrivial and resource-intensive.
Methods
We propose a semi-automated method to quantify MLI that does not require specialized computer knowledge and uses a free, open-source image-processor (Fiji). We tested the method with a computer-generated, idealized dataset, derived an MLI usage guide, and successfully applied this method to a murine model of particulate matter (PM) exposure. Fields of randomly placed, uniform-radius circles were analyzed. Optimal numbers of chords to assess based on MLI were found via receiver-operator-characteristic (ROC)-area under the curve (AUC) analysis. Intraclass correlation coefficient (ICC) measured reliability.
Results
We demonstrate high accuracy (AUCROC > 0.8 for MLIactual > 63.83 pixels) and excellent reliability (ICC = 0.9998, p < 0.0001). We provide a guide to optimize the number of chords to sample based on MLI. Processing time was 0.03 s/image. We showed elevated MLI in PM-exposed mice compared to PBS-exposed controls. We have also provided the macros that were used and have made an ImageJ plugin available free for academic research use at https://med.nyu.edu/nolanlab.
Conclusions
Our semi-automated method is reliable, equally fast as fully automated methods, and uses free, open-source software. Additionally, we quantified the optimal number of chords that should be measured per lung field.
Springer
以上显示的是最相近的搜索结果。 查看全部搜索结果

Google学术搜索按钮

example.edu/paper.pdf
搜索
获取 PDF 文件
引用
References