In this chapter, several planar array designs based on the use of a small number of the active elements located at the center of the planar array surrounded by another number of the uniformly distributed parasitic elements are investigated. The parasitic elements are used to modify the radiation pattern of the central active elements. The overall radiation pattern of the resulting planar array with a small number of active elements is found to be comparable to that of the fully active array elements with a smaller sidelobe level (SLL) at the cost of a relatively wider beamwidth and lower directivity. Nevertheless, the uses of only a small number of the active elements provide a very simple feeding network that reduces the cost and the complexity of the array. Simulation results which have been computed using computer simulation technology-microwave studio (CST-MWS) show that the sidelobe level of the designed array pattern with parasitic elements is considerably better than that of the similar fully active array elements. The proposed array can be effectively and efficiently used in the applications that require wider antenna beams.