Randla-net: Efficient semantic segmentation of large-scale point clouds

Q Hu, B Yang, L Xie, S Rosa, Y Guo… - Proceedings of the …, 2020 - openaccess.thecvf.com
Proceedings of the IEEE/CVF conference on computer vision and …, 2020openaccess.thecvf.com
We study the problem of efficient semantic segmentation for large-scale 3D point clouds. By
relying on expensive sampling techniques or computationally heavy pre/post-processing
steps, most existing approaches are only able to be trained and operate over small-scale
point clouds. In this paper, we introduce RandLA-Net, an efficient and lightweight neural
architecture to directly infer per-point semantics for large-scale point clouds. The key to our
approach is to use random point sampling instead of more complex point selection …
Abstract
We study the problem of efficient semantic segmentation for large-scale 3D point clouds. By relying on expensive sampling techniques or computationally heavy pre/post-processing steps, most existing approaches are only able to be trained and operate over small-scale point clouds. In this paper, we introduce RandLA-Net, an efficient and lightweight neural architecture to directly infer per-point semantics for large-scale point clouds. The key to our approach is to use random point sampling instead of more complex point selection approaches. Although remarkably computation and memory efficient, random sampling can discard key features by chance. To overcome this, we introduce a novel local feature aggregation module to progressively increase the receptive field for each 3D point, thereby effectively preserving geometric details. Extensive experiments show that our RandLA-Net can process 1 million points in a single pass with up to 200x faster than existing approaches. Moreover, our RandLA-Net clearly surpasses state-of-the-art approaches for semantic segmentation on two large-scale benchmarks Semantic3D and SemanticKITTI.
openaccess.thecvf.com
以上显示的是最相近的搜索结果。 查看全部搜索结果