This paper presents a trajectory generation algorithm that efficiently computes high-performance flight trajectories that are capable of moving a quadrocopter from a large class of initial states to a given target point that will be reached at rest. The approach consists of planning separate trajectories in each of the three translational degrees of freedom, and ensuring feasibility by deriving decoupled constraints for each degree of freedom through approximations that preserve feasibility. The presented algorithm can compute a feasible trajectory within tens of microseconds on a laptop computer; remaining computation time can be used to iteratively improve the trajectory. By replanning the trajectory at a high rate, the trajectory generator can be used as an implicit feedback law similar to model predictive control. The solutions generated by the algorithm are analyzed by comparing them with time-optimal motions, and experimental results validate the approach.