Solid oxide fuel cells (SOFCs) can directly operate on hydrocarbon fuels such as natural gas; however, the widely used nickel-based anodes face grand challenges such as coking, sulfur poisoning, and redox instability. We report a novel double perovskite oxide Sr2Co0.4Fe1.2Mo0.4O6−δ (SCFM) that possesses excellent redox reversibility and can be used as both the cathode and the anode. When heat-treated at 900 °C in a reducing environment, double perovskite phase SCFM transforms into a composite of the Ruddlesden–Popper structured oxide Sr3Co0.1Fe1.3Mo0.6O7−δ (RP-SCFM) with the Co–Fe alloy nanoparticles homogeneously distributed on the surface of RP-SCFM. At 900 °C in an oxidizing atmosphere, the composite transforms back into the double perovskite phase SCFM. The excellent oxygen reduction reaction catalytic activity and mixed ionic–electronic conductivity make SCFM an excellent cathode material for SOFCs. When SCFM is used as the anode, excellent performance and stability are achieved upon either direct oxidation of methane as a fuel or operation with sulfur-containing fuels. The excellent redox reversibility coupled with outstanding electrical and catalytic properties manifested by SCFM will enable a broad application in energy conversion applications.