We present REGLO, a novel methodology for repairing pretrained neural networks to satisfy global robustness and individual fairness properties. A neural network is said to be globally robust with respect to a given input region if and only if all the input points in the region are locally robust. This notion of global robustness also captures the notion of individual fairness as a special case. We prove that any counterexample to a global robustness property must exhibit a corresponding large gradient. For ReLU networks, this result allows us to efficiently identify the linear regions that violate a given global robustness property. By formulating and solving a suitable robust convex optimization problem, REGLO then computes a minimal weight change that will provably repair these violating linear regions. Experimental results demonstrate that REGLO can significantly improve global robustness and individual fairness while maintaining performance across a wide variety of benchmarks.