SAR-based vibration estimation using the discrete fractional Fourier transform

Q Wang, M Pepin, RJ Beach, R Dunkel… - … on Geoscience and …, 2012 - ieeexplore.ieee.org
Q Wang, M Pepin, RJ Beach, R Dunkel, T Atwood, B Santhanam, W Gerstle, AW Doerry
IEEE Transactions on Geoscience and Remote Sensing, 2012ieeexplore.ieee.org
A vibration estimation method for synthetic aperture radar (SAR) is presented based on a
novel application of the discrete fractional Fourier transform (DFRFT). Small vibrations of
ground targets introduce phase modulation in the SAR returned signals. With standard
preprocessing of the returned signals, followed by the application of the DFRFT, the time-
varying accelerations, frequencies, and displacements associated with vibrating objects can
be extracted by successively estimating the quasi-instantaneous chirp rate in the phase …
A vibration estimation method for synthetic aperture radar (SAR) is presented based on a novel application of the discrete fractional Fourier transform (DFRFT). Small vibrations of ground targets introduce phase modulation in the SAR returned signals. With standard preprocessing of the returned signals, followed by the application of the DFRFT, the time-varying accelerations, frequencies, and displacements associated with vibrating objects can be extracted by successively estimating the quasi-instantaneous chirp rate in the phase-modulated signal in each subaperture. The performance of the proposed method is investigated quantitatively, and the measurable vibration frequencies and displacements are determined. Simulation results show that the proposed method can successfully estimate a two-component vibration at practical signal-to-noise levels. Two airborne experiments were also conducted using the Lynx SAR system in conjunction with vibrating ground test targets. The experiments demonstrated the correct estimation of a 1-Hz vibration with an amplitude of 1.5 cm and a 5-Hz vibration with an amplitude of 1.5 mm.
ieeexplore.ieee.org
以上显示的是最相近的搜索结果。 查看全部搜索结果