Schizophrenia is a complex, debilitating mental disorder characterized by wide-ranging symptoms including delusions, hallucinations (so-called positive symptoms), and impaired motor and speech/language production (so-called negative symptoms). Salience-monitoring theorists propose that abnormal functional communication between the salience network (SN) and default mode network (DMN) begets positive and negative symptoms of schizophrenia, yet prior studies have predominately reported links between disrupted SN/DMN functional communication and positive symptoms. It remains unclear whether disrupted SN/DMN functional communication explains (1) solely positive symptoms or (2) both positive and negative symptoms of schizophrenia. To address this question, we incorporate time-lag-shifted functional network connectivity (FNC) analyses that explored coherence of the resting-state functional magnetic resonance imaging signal of 3 networks (anterior DMN, posterior DMN, and SN) with fixed time lags introduced between network time series (1 TR = 2 s; 2 TR = 4 s). Multivariate linear regression analysis revealed that severity of disordered thought and attentional deficits were negatively associated with 2 TR-shifted FNC between anterior DMN and posterior DMN. Meanwhile, severity of flat affect and bizarre behavior were positively associated with 1 TR-shifted FNC between anterior DMN and SN. These results provide support favoring the hypothesis that lagged SN/DMN functional communication is associated with both positive and negative symptoms of schizophrenia.