Secure video surveillance framework in smart city

H Li, T Xiezhang, C Yang, L Deng, P Yi - Sensors, 2021 - mdpi.com
H Li, T Xiezhang, C Yang, L Deng, P Yi
Sensors, 2021mdpi.com
In the construction process of smart cities, more and more video surveillance systems have
been deployed for traffic, office buildings, shopping malls, and families. Thus, the security of
video surveillance systems has attracted more attention. At present, many researchers focus
on how to select the region of interest (RoI) accurately and then realize privacy protection in
videos by selective encryption. However, relatively few researchers focus on building a
security framework by analyzing the security of a video surveillance system from the system …
In the construction process of smart cities, more and more video surveillance systems have been deployed for traffic, office buildings, shopping malls, and families. Thus, the security of video surveillance systems has attracted more attention. At present, many researchers focus on how to select the region of interest (RoI) accurately and then realize privacy protection in videos by selective encryption. However, relatively few researchers focus on building a security framework by analyzing the security of a video surveillance system from the system and data life cycle. By analyzing the surveillance video protection and the attack surface of a video surveillance system in a smart city, we constructed a secure surveillance framework in this manuscript. In the secure framework, a secure video surveillance model is proposed, and a secure authentication protocol that can resist man-in-the-middle attacks (MITM) and replay attacks is implemented. For the management of the video encryption key, we introduced the Chinese remainder theorem (CRT) on the basis of group key management to provide an efficient and secure key update. In addition, we built a decryption suite based on transparent encryption to ensure the security of the decryption environment. The security analysis proved that our system can guarantee the forward and backward security of the key update. In the experiment environment, the average decryption speed of our system can reach 91.47 Mb/s, which can meet the real-time requirement of practical applications.
MDPI
以上显示的是最相近的搜索结果。 查看全部搜索结果