Because pollinators are unable to directly assess the amount of rewards offered by flowers, they rely on the information provided by advertising floral traits. Thus, having a lower intra‐individual correlation between signal and reward (signal accuracy) than other plants in the population provides the opportunity to reduce investment in rewards and cheat pollinators. However, pollinators’ cognitive capacities can impose a limit to the evolution of this plant cheating strategy if they can punish those plants with low signal accuracy. In this study, we examined the opportunity for cheating in the perennial weed Turnera ulmifolia L. evaluating the selective value of signal accuracy, floral display and reward production in a natural population. We found that plant reproductive success was positively related to signal accuracy and floral display, but not to nectar production. The intensity of selection on floral display was more than three times higher than on signal accuracy. The pattern of selection indicated that pollinators can select for signal accuracy provided by plants and suggests that learning abilities of pollinators can limit the evolution of deceptive strategies in T. ulmifolia.