In Internet of Things-based smart grids, smart meters record and report a massive number of power consumption data at certain intervals to the data center of the utility for load monitoring and energy management. Energy theft is a big problem for smart meters and causes non-technical losses. Energy theft attacks can be launched by malicious consumers by compromising the smart meters to report manipulated consumption data for less billing. It is a global issue causing technical and financial damage to governments and operators. Deep learning-based techniques can effectively identify consumers involved in energy theft through power consumption data. In this study, a hybrid convolutional neural network (CNN)-based energy-theft-detection system is proposed to detect data-tampering cyber-attack vectors. CNN is a commonly employed method that automates the extraction of features and the classification process. We employed CNN for feature extraction and traditional machine learning algorithms for classification. In this work, honest data were obtained from a real dataset. Six attack vectors causing data tampering were utilized. Tampered data were synthetically generated through these attack vectors. Six separate datasets were created for each attack vector to design a specialized detector tailored for that specific attack. Additionally, a dataset containing all attack vectors was also generated for the purpose of designing a general detector. Furthermore, the imbalanced dataset problem was addressed through the application of the generative adversarial network (GAN) method. GAN was chosen due to its ability to generate new data closely resembling real data, and its application in this field has not been extensively explored. The data generated with GAN ensured better training for the hybrid CNN-based detector on honest and malicious consumption patterns. Finally, the results indicate that the proposed general detector could classify both honest and malicious users with satisfactory accuracy.