A significant number of large-scale civil infrastructure projects experience cost overruns and schedule delays. To minimize these disastrous consequences, management actions need to be carefully examined at both the strategic and operational levels, as their effectiveness is mainly dependent on how well strategic perspectives and operational details of a project are balanced. However, current construction project management approaches have treated the strategic and operational issues separately, and consequently introduced a potential conflict between strategic and operational analyses. To address this issue, a hybrid simulation model is presented in this paper. This hybrid model combines system dynamics and discrete event simulation which have mainly been utilized to analyze the strategic and operational issues in isolation, respectively. As an application example, a nontypical repetitive earthmoving process is selected and simulated. The simulation results demonstrate that a systematic integration of strategic perspective and operational details is helpful to enhance the process performance by enabling construction managers to identify potential process improvement areas that traditional approaches may miss. Based on the simulation results, it is concluded that the proposed hybrid simulation model has great potential to support both the strategic and operational aspects of construction project management and to ultimately help increase project performance.