Studies on InFeMO4 (M= Mg, Co, Ni, Cu and Zn) compounds: crystal structure and cation distribution

M Matvejeff, J Linden, M Karppinen… - Journal of Solid State …, 2007 - Elsevier
M Matvejeff, J Linden, M Karppinen, H Yamauchi
Journal of Solid State Chemistry, 2007Elsevier
The crystal structure and the cation distribution in a series of InFeMO4 compounds (M= Mg,
Co, Ni, Cu and Zn) have been studied by means of X-ray powder diffraction and 57Fe
Mössbauer spectroscopy. The M= Mg, Co and Ni samples were confirmed to crystallize with
the cubic spinel structure (space group Fd-3m), whereas the M= Cu and Zn samples
adopted a hexagonal structure. For all the phases, the cation stoichiometry was found to
deviate from the ideal molecular formula, InFeMO4. The paramagnetic Mössbauer spectra of …
The crystal structure and the cation distribution in a series of InFeMO4 compounds (M=Mg, Co, Ni, Cu and Zn) have been studied by means of X-ray powder diffraction and 57Fe Mössbauer spectroscopy. The M=Mg, Co and Ni samples were confirmed to crystallize with the cubic spinel structure (space group Fd-3m), whereas the M=Cu and Zn samples adopted a hexagonal structure. For all the phases, the cation stoichiometry was found to deviate from the ideal molecular formula, InFeMO4. The paramagnetic Mössbauer spectra of the samples were analyzed using a four-component fitting model suggested by a statistical simulation with point-charge calculation. The Mössbauer data confirmed the trivalent state for iron at both cation sites in all samples. The results from the fitting of the Mössbauer spectra were also employed in Rietveld refinement of the X-ray diffraction data for the determination of exact cation distribution. It was seen that the distribution of Fe at the A and B sites follows very closely the 1:2 ratio of the ideal formula AB2O4 for all samples, whereas trivalent indium was clearly seen to favor the A site and divalent M cation the B site.
Elsevier
以上显示的是最相近的搜索结果。 查看全部搜索结果

Google学术搜索按钮

example.edu/paper.pdf
搜索
获取 PDF 文件
引用
References