During bacterial and viral infections, unmethylated CpG-DNA released by proliferating and dying microbes is recognized by toll-like receptor (TLR) 9 in host cells, initiating innate immune responses. Many corneal infections occur secondary to epithelial breaches and represent a major cause of vision impairment and blindness globally. To mimic this clinical situation, we investigated mechanisms of TLR9 ligand–induced corneal inflammation in mice after epithelial debridement. Application of CpG oligodeoxynucleotides (ODNs) resulted in neutrophil and macrophage infiltration to the cornea and loss of transparency. By 6 hours after CpG-ODN administration, TLR9 mRNA was increased in the cornea and retina. In vivo clinical examination at 24 hours revealed inflammatory infiltrates in the vitreous and retina, which were confirmed ex vivo to be neutrophils and macrophages, along with activated resident microglia. CpG-ODN–induced intraocular inflammation was abrogated in TLR9−/− and macrophage-depleted mice. Bone marrow reconstitution of irradiated TLR9−/− mice with TLR9+/+ bone marrow led to restored corneal inflammatory responses to CpG-ODN. Fluorescein isothiocyanate–CpG-ODN rapidly penetrated the cornea and ocular media to reach the retina, where it was present within CD68+ retinal macrophages and microglia. These data show that topically applied CpG-ODN induces intraocular inflammation owing to TLR9 activation of monocyte-lineage cells. These novel findings indicate that microbial CpG-DNA released during bacterial and/or viral keratitis can cause widespread inflammation within the eye, including the retina.