This work presents an approach to detect moving objects from Unmanned Aerial Vehicles (UAV). A common framework for most of the existing techniques is using image registration to warp consecutive frames as an ego-motion compensation step and applying frame differencing to detect the moving objects. Assuming a planar scene, we propose the exploitation of telemetry information available from Global Positioning and Inertial Navigation Systems (GPS/INS) to estimate a similarity transformation matrix that would map the image points from one frame to another. In this work, we show that the telemetry-based image registration combined with global registration methods produces more accurate results than the traditional image registration techniques in case of a scene with poor or no texture. To segment the moving objects, we employ the probabilistic background modelling method with mixture of Gaussian distributions.