Animal bodies are colonized by many microorganisms which can provide indispensable services to their hosts. Although nematode gut microbiota has been extensively studied in recent years, the driving factors of gut microbiome of soil nematodes from a long-term fertilization field are unclear. Here, using 16S rRNA gene amplicon sequencing, we explored the nematode gut microbiota under different fertilization patterns (control, inorganic fertilizers and mixed fertilizers) and fertilization durations (5 y, 8 y and 10 y). Our results revealed that nematode gut microbiota was dominated by core bacterial taxa AF502208 (anaerobic bacteria), Enterobacter (plant litter decomposition) and Ancylobacter (organic matter decomposition and nitrogen cycling), significantly distinct from soil microbiome, and the assembly of that was a non-random process, which suggested host conditions contributed to maintaining the gut microbiota. Moreover, fertilization pattern had a greater influence on nematode gut microbiome than fertilization duration. Inorganic fertilization (5.19) significantly reduced the diversity of the nematode gut microbiota (6.68) shown by Shannon index (P < 0.05). Canonical correspondence analysis demonstrates that soil properties such as pH, organic matter, total phosphorus, available phosphorus, ammonium nitrogen, moisture content, nitrate nitrogen and total nitrogen have significant effects on the nematode microbiome. Structured equation models further revealed that fertilization could obviously affect the nematode gut microbiota, and the effects were maintained even when accounting simultaneously for the drivers of soil bacteria and soil properties. This study provides a solid evidence that the shifting of nematode gut microbiota under long-term fertilization was resulted from environmental factors and host conditions, and advance the insights into host-microbiome in the agricultural ecosystems.