The scleractinian coral species that so heavily define tropical coral reefs are increasingly threatened by anthropogenic global warming. Rising sea surface temperatures in combination with light stress causes the photosynthetic breakdown of the coral’s algal symbiont, Symbiodinium. Corals have developed a number of physiological responses to handle acute stressors, such as the production of ultraviolet-protecting amino acids, heat shock proteins, the ability to shift symbionts, and the production of fluorescent proteins. The latter has been thought to play a photoprotective role in the coral holobiont, and studies have shown evidence that corals orient these pigments to divert harmful light away from their symbionts in shallow reefs that are at great risk of environmental stress. The biological role these proteins play is still largely speculative. This study is part of a larger study examining coral physiological responses to thermal stress.