Pharmacogenomics is the study of how genetic makeup determines the response to a therapeutic intervention. It has the potential to revolutionize the practice of medicine by individualisation of treatment through the use of novel diagnostic tools. This new science should reduce the trial-and-error approach to the choice of treatment and thereby limit the exposure of patients to drugs that are not effective or are toxic for them. Single Nucleotide Polymorphisms (SNPs) holds the key in defining the risk of an individual’s susceptibility to various illnesses and response to drugs. There is an ongoing process of identifying the common, biologically relevant SNPs, in particular those that are associated with the risk of disease. The identification and characterization of large numbers of these SNPs are necessary before we can begin to use them extensively as genetic tools. As SNP allele frequencies vary considerably across human ethnic groups and populations, the SNP consortium has opted to use an ethnically diverse panel to maximize the chances of SNP discovery. Currently most studies are biased deliberately towards coding regions and the data generated from them therefore are unlikely to reflect the overall distribution of SNPs throughout the genome. The SNP consortium protocol was designed to identify SNPs without any bias towards these coding regions. Most pharmacogenomic studies were carried out in heterogeneous clinical trial populations, using case-control or cohort association study designs employing either candidate gene or Linkage disequilibrium (LD) mapping approaches. Concerns about the required patient sample sizes, the extent of LD, the number of SNPs needed in a map, the cost of genotyping SNPs, and the interpretation of results are some of the challenges that surround this field. While LD mapping is appealing in that it is an unbiased approach and allows a comprehensive genome-wide survey, the challenges and limitations are significant. An alternative such as the candidate gene approach does offer several advantages over LD mapping. Ultimately, as all human genes are discovered, the need for random SNP markers diminishes and gene-based SNP approaches will predominate. The challenges will then be to demonstrate convincing links between genetic variation and drug responses and to translate that information into useful pharmacogenomic tests.