Responses to water stress are thought to be mediated by transcriptional regulation of gene expression via reversible protein phosphorylation events. Previously, we reported that bZIP (basic-domain leucine zipper)-type AREB/ABF (ABA-responsive element-binding protein/factor) transcription factors are involved in ABA signaling under water stress conditions in Arabidopsis. The AREB1 protein is phosphorylated in vitro by ABA-activated SNF1-related protein kinase 2s (SnRK2s) such as SRK2D/SnRK2.2, SRK2E/SnRK2.6 and SRK2I/SnRK2.3 (SRK2D/E/I). Consistent with this, we now show that SRK2D/E/I and AREB1 co-localize and interact in nuclei in planta. Our results show that unlike srk2d, srk2e and srk2i single and double mutants, srk2d srk2e srk2i (srk2d/e/i) triple mutants exhibit greatly reduced tolerance to drought stress and highly enhanced insensitivity to ABA. Under water stress conditions, ABA- and water stress-dependent gene expression, including that of transcription factors, is globally and drastically impaired, and jasmonic acid (JA)-responsive and flowering genes are up-regulated in srk2d/e/i triple mutants, but not in other single and double mutants. The down-regulated genes in srk2d/e/i and areb/abf triple mutants largely overlap in ABA-dependent expression, supporting the view that SRK2D/E/I regulate AREB/ABFs in ABA signaling in response to water stress. Almost all dehydration-responsive LEA (late embryogenesis abundant) protein genes and group-A PP2C (protein phosphatase 2C) genes are strongly down-regulated in the srk2d/e/i triple mutants. Further, our data show that these group-A PP2Cs, such as HAI1 and ABI1, interact with SRK2D. Together, our results indicate that SRK2D/E/I function as main positive regulators, and suggest that ABA signaling is controlled by the dual modulation of SRK2D/E/I and group-A PP2Cs.