Tracking interfacial single-molecule pH and binding dynamics via vibrational spectroscopy

J Huang, DB Grys, J Griffiths, B de Nijs, M Kamp… - Science …, 2021 - science.org
Science advances, 2021science.org
Understanding single-molecule chemical dynamics of surface ligands is of critical
importance to reveal their individual pathways and, hence, roles in catalysis, which
ensemble measurements cannot see. Here, we use a cascaded nano-optics approach that
provides sufficient enhancement to enable direct tracking of chemical trajectories of single
surface-bound molecules via vibrational spectroscopy. Atomic protrusions are laser-induced
within plasmonic nanojunctions to concentrate light to atomic length scales, optically …
Understanding single-molecule chemical dynamics of surface ligands is of critical importance to reveal their individual pathways and, hence, roles in catalysis, which ensemble measurements cannot see. Here, we use a cascaded nano-optics approach that provides sufficient enhancement to enable direct tracking of chemical trajectories of single surface-bound molecules via vibrational spectroscopy. Atomic protrusions are laser-induced within plasmonic nanojunctions to concentrate light to atomic length scales, optically isolating individual molecules. By stabilizing these atomic sites, we unveil single-molecule deprotonation and binding dynamics under ambient conditions. High-speed field-enhanced spectroscopy allows us to monitor chemical switching of a single carboxylic group between three discrete states. Combining this with theoretical calculation identifies reversible proton transfer dynamics (yielding effective single-molecule pH) and switching between molecule-metal coordination states, where the exact chemical pathway depends on the intitial protonation state. These findings open new domains to explore interfacial single-molecule mechanisms and optical manipulation of their reaction pathways.
AAAS
以上显示的是最相近的搜索结果。 查看全部搜索结果