The inclusion of second-phase particles in nickel-based matrix to fabricate composite coatings presents a promising solution to combating corrosion and wear deterioration of materials during service. Composite coatings possess better surface properties such as wear resistance, high microhardness, thermal stability, and corrosion resistance than the traditional nickel coatings. Their excellent properties enable them to be used in advanced industrial applications where they will be constantly exposed to severe and degrading environments. There are various surface modification techniques that are employed to produce these coatings and electrodeposition has received wide range of use in fabrication of nickel matrix composites. This technique is associated with low cost, simplicity of operation, versatility, high production rates, and few size and shape limitations. To produce advanced electrodeposits with better performance during application, the optimization and further developments of the process remain vital. Therefore, this chapter aims to review the electrofabrication and properties of nickel composite/nanocomposite coatings for corrosion and wear applications.