Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing

S Wang, L Liu, L Gan, H Chen, X Hou, Y Ding… - Nature …, 2021 - nature.com
S Wang, L Liu, L Gan, H Chen, X Hou, Y Ding, S Ma, DW Zhang, P Zhou
Nature Communications, 2021nature.com
With the advent of the big data era, applications are more data-centric and energy efficiency
issues caused by frequent data interactions, due to the physical separation of memory and
computing, will become increasingly severe. Emerging technologies have been proposed to
perform analog computing with memory to address the dilemma. Ferroelectric memory has
become a promising technology due to field-driven fast switching and non-destructive
readout, but endurance and miniaturization are limited. Here, we demonstrate the α-In2Se3 …
Abstract
With the advent of the big data era, applications are more data-centric and energy efficiency issues caused by frequent data interactions, due to the physical separation of memory and computing, will become increasingly severe. Emerging technologies have been proposed to perform analog computing with memory to address the dilemma. Ferroelectric memory has become a promising technology due to field-driven fast switching and non-destructive readout, but endurance and miniaturization are limited. Here, we demonstrate the α-In2Se3 ferroelectric semiconductor channel device that integrates non-volatile memory and neural computation functions. Remarkable performance includes ultra-fast write speed of 40 ns, improved endurance through the internal electric field, flexible adjustment of neural plasticity, ultra-low energy consumption of 234/40 fJ per event for excitation/inhibition, and thermally modulated 94.74% high-precision iris recognition classification simulation. This prototypical demonstration lays the foundation for an integrated memory computing system with high density and energy efficiency.
nature.com
以上显示的是最相近的搜索结果。 查看全部搜索结果