Uncovering acoustic signatures of pore formation in laser powder bed fusion

JR Tempelman, MK Mudunuru, S Karra… - … International Journal of …, 2024 - Springer
The International Journal of Advanced Manufacturing Technology, 2024Springer
We present a machine learning workflow to discover signatures in acoustic measurements
that can be utilized to create a low-dimensional model to accurately predict the location of
keyhole pores formed during additive manufacturing processes. Acoustic measurements
were sampled at 100 kHz during single-layer laser powder bed fusion (LPBF) experiments,
and spatio-temporal registration of pore locations was obtained from post-build radiography.
Power spectral density (PSD) estimates of the acoustic data were then decomposed using …
Abstract
We present a machine learning workflow to discover signatures in acoustic measurements that can be utilized to create a low-dimensional model to accurately predict the location of keyhole pores formed during additive manufacturing processes. Acoustic measurements were sampled at 100 kHz during single-layer laser powder bed fusion (LPBF) experiments, and spatio-temporal registration of pore locations was obtained from post-build radiography. Power spectral density (PSD) estimates of the acoustic data were then decomposed using non-negative matrix factorization with custom \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{k}$$\end{document}-means clustering (NMF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{k}$$\end{document}) to learn the underlying spectral patterns associated with pore formation. NMF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{k}$$\end{document} returned a library of basis signals and matching coefficients to blindly construct a feature space based on the PSD estimates in an optimized fashion. Moreover, the NMF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{k}$$\end{document} decomposition led to the development of computationally inexpensive machine learning models which are capable of quickly and accurately identifying pore formation with classification accuracy of supervised and unsupervised label learning greater than 95% and 90%, respectively. The intrinsic data compression of NMFk, the relatively light computational cost of the machine learning workflow, and the high classification accuracy makes the proposed workflow an attractive candidate for edge computing toward in-situ keyhole pore prediction in LPBF.
Springer
以上显示的是最相近的搜索结果。 查看全部搜索结果