Uncovering droop control laws embedded within the nonlinear dynamics of van der pol oscillators

M Sinha, F Dörfler, BB Johnson… - IEEE Transactions on …, 2015 - ieeexplore.ieee.org
IEEE Transactions on Control of Network Systems, 2015ieeexplore.ieee.org
This paper examines the dynamics of power-electronic inverters in islanded microgrids that
are controlled to emulate the dynamics of Van der Pol oscillators. The general strategy of
controlling inverters to emulate the behavior of nonlinear oscillators presents a compelling
time-domain alternative to ubiquitous droop control methods which presume the existence of
a quasistationary sinusoidal steady state and operate on phasor quantities. We present two
main results in this paper. First, by leveraging the method of periodic averaging, we …
This paper examines the dynamics of power-electronic inverters in islanded microgrids that are controlled to emulate the dynamics of Van der Pol oscillators. The general strategy of controlling inverters to emulate the behavior of nonlinear oscillators presents a compelling time-domain alternative to ubiquitous droop control methods which presume the existence of a quasistationary sinusoidal steady state and operate on phasor quantities. We present two main results in this paper. First, by leveraging the method of periodic averaging, we demonstrate that droop laws are intrinsically embedded within a slower time scale in the nonlinear dynamics of Van der Pol oscillators. Second, we establish the global convergence of amplitude and phase dynamics in a resistive network interconnecting inverters controlled as Van der Pol oscillators. Furthermore, under a set of nonrestrictive decoupling approximations, we derive sufficient conditions for local exponential stability of desirable equilibria of the linearized amplitude and phase dynamics.
ieeexplore.ieee.org
以上显示的是最相近的搜索结果。 查看全部搜索结果